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This paper describes an attempt to verify experimentally the wavemaker theory 
for a piston-type wavemaker. The theory is based upon the usual assumptions of 
classical hydrodynamics, i.e. that the fluid is inviscid, of uniform density, that 
motion starts from rest, and that non-linear terms are neglected. If the water 
depth, wavelength, wave period, and wavemaker stroke (of a harmonically oscil- 
lating wavemaker) are known, then the wavemaker theory predicts the wave 
motioneverywhere, and in particular the wave height a few depths away from the 
wavemaker. 

The experiments were conducted in a 1OOft. wave channel, and the wave- 
height envelope was measured with a combination hook-and-point gauge. 
A plane beach (sloping 1 : 15) to absorb the wave energy was located at the far end 
of the channel. The amplitude-reflexion coefficient was usually less than 10 yo. 
Unless this reflexion effect is corrected for, it imposes one of the most serious 
limitations upon experimental accuracy. In  the analysis of the present set of 
measurements, the reflexion effect is taken into account. 

The first series of tests was concerned with verifying the wavemaker theory for 
waves of small steepness (0.002 < H/L Q 0.03). For this range of wave steep- 
nesses, the measured wave heights were found to be on the average 3.4 % below 
the height predicted by theory. The experimental error, as measured by the 
scatter about aline 3.4 % below the theory, was of the order of 3 yo. The systematic 
deviation of 3.4% is believed to be partly due to finite-amplitude effects and 
possibly to imperfections in the wavemaker motion. 

The second series of tests was concerned with determining the effects of finite 
amplitude. For therange of wave steepnesses 0.045 Q HIL < 0.048, themeasured 
wave heights were found to be on the average 10% below the heightspredictedfrom 
the small-amplitude theory. The experimental error was again of the order of 3 %. 

It is considered that these measurements confirm the validity of the small- 
amplitude wave theory. No confirmation of this accuracy has hitherto been given 
for forced motions. 
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1. Introduction 
Some years ago, a group of engineers working at the Laboratoire Neyrpic at 

Grenoble published an account of a simple experiment (Neyrpic 1952) which gave 
results incompatible with the predictions of the mathematical theory of water 
waves, and which suggested that this theory was physically inadequate or even 
irrelevant. Even before this, the evidence for the theory had appeared incomplete 
and unsatisfactory. In  the Neyrpic experiment, a paddle wavemaker (i.e. a plate 
hinged at the bottom of a wave channel) was given a small harmonic motion 
about a vertical mean position, and the wave height a t  some distance down the 
channel was measured; this was then compared with the theory of Havelock 
(1929), who had calculated the motion on the assumptions of classical hydro- 
dynamics (see §§ 2, 3 below). It was found that the measured wave height was 
consistently about 30 yo below the theoretical wave height. The assumptions of 
the theory seemed to be satisfied to a close approximation (see the papers by 
Suquet (1951) and Bi6sel & Suquet (1951) of the Laboratoire Neyrpic). The 
Neyrpic group was unable to make a more detailed study, and no explanation has 
since been given of the discrepancy. 

Another attempted verification of theoretical wave-height predictions has 
been made by Cooper & Longuet-Higgins (1951), who investigated reflexion from 
a partially immersed vertical barrier by measuring the unsteady state before the 
secondary incident wave (see 8 4.1 below) had travelled back fvom the wave- 
maker. This unsteady state persisted for so many periods that it could be treated 
as a steady state with little loss of accuracy. The measured reflexion coefficient 
was always lower than the theoretical; the discrepancy tended to decrease as the 
depth of immersion of the lower edge of the barrier was increased, but was still of 
the order of 10 % when the depth of immersion was one-third of the wavelength. 
It was suggested that part of this energy loss occurred near the lower edge of the 
barrier where an eddying motion with separation was observed. 

On the other hand, many experiments on particle orbits, frequencies, and 
velocities have verified the theoretical predictions (see also § 2 below); in these 
experiments the orbits were correlated only with the local measured wave height. 
The suggestion might be made on the evidence of the Neyrpic experiments that 
the theory predicts correctly everything except wave heights (and presumably 
forces), to which a reduction factor of 0.7 to 0.9 should be applied. By what 
physical mechanism can a large part of the energy input be lost? Is the same 
correction factor required in all engineering applications? These and similar 
questions seemed sufficiently important to warrant an experimental study, 
which is described in the present paper. 

The present experiment, like the Neyrpic experiment, is concerned with the 
investigation of a wavemaker; however, the results of this investigation agree 
well with the theoretical predictions of wave heights. We are unable to suggest 
a convincing reason for the discrepancy found by the Neyrpic group. The present 
experiment provides some physical verification for the wave-height predictions 
of the mathematical theory. 
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2. Small-amplitude waves : theory and experiment 
The greater part of the mathematical theory of water waves is based on the 

following assumptions : 
(1) Density variations and viscosity in the fluid are neglected. Then the motion, 

if originally started from rest, is irrotational and can be described by a velocity 
potential . 

( 2 )  Non-linear terms in the equations of motion are neglected; this seems 
reasonable if the amplitude of motion is sufficiently small. The mathematical 
difficulties are greatly increased when non-linear or viscous effects are included, 
and comparatively little is known about these. 

Accounts of the linearized theory are given in most text-books on hydro- 
dynamics (e.g. see Lamb 1932, Chapters 8 and 9). Recent developments are 
described by Stoker (1957). Many experiments have been made to check the 
linearized theory, but (as already noted in Q 1) these are concerned with regular 
wave trains or with frequencies and velocities rather than with wave heights or 
forces. To mention just a few investigations, wave velocities and particle orbits 
have been measured by the Beach Erosion Board (1941) and more accurately by 
Suquet & Wallet (1953), and were found to agree with theory within the experi- 
mental error of a few per cent. Suquet & Wallet found that the wave profiles 
agreed well with the non-linear theory. The mean drift velocity of particles (mass 
transport), however, differed considerably in some shallow-water experiments. 
This discrepancy has been observed in detail (Bagnold 1947) and explained as a 
consequenceof viscosity (Longuet-Higgins 1953); itis, however, anon-linear effect. 
The theory has also been confirmed for frequencies, e.g. for resonance frequencies 
of edge waves by Ursell(l952) and for stability under vertical oscillatory accelera- 
tions where a curve of neutral stability was successfully predicted by Benjamin & 
Ursell(l954). The discrepancy was within the experimental error of afew per cent. 
The frequency of free oscillation in a vessel has been verified to within a few per 
cent by Case & Parkinson (1957). On a much larger scale, the group velocity of 
ocean swell has been found to agree with theory by Barber & Ursell (1948). 

In  the theory, viscosity has been neglected; this is not always realistic, par- 
ticularly when flow separation takes place. However, similar difficulties arise in 
model experiments as well as in the theory. To fix ideas, let us consider a floating 
body placed in waves. What is the interaction between the body and the waves? 
What are the forces on the body? Such questions are conventionally treated by 
a model experiment in the laboratory where forces and velocities can be measured. 
The problem is, how to derive from these the full-scale forces and velocities. For 
it is only when viscosity can be neglected that simple Froude scaling is appro- 
priate. Sometimes more complex scaling procedures are used, e.g. in the measure- 
ment of ship drag it is customary to separate the force somewhat arbitrarily into 
viscous and wave-drag components which are scaled according to the Reynolds and 
Proude laws respectively. By this method, full-scale and model tests are found 
to correlate quite reasonably. A similar procedure has been used to analyse wave 
forces on vertical fixed piles. The agreement is best when viscous effects are 
small. 

3-2 
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In  addition to these difficulties of principle, model tests suffer from experi- 
mental errors which can be large. There are therefore definite advantages in 
studying problems theoretically, and to try to find at least the non-viscous effects 
from the mathematical theory; this is perhaps as accurate as the traditional 
experimental method. But before the results of the theory can be used with any 
confidence, the relevance of the theory must be established by careful experi- 
ments; in particular, the Neyrpic experiment, which seems to be incompatible 
with the theory, requires further study. 

3. Wavemaker theory 
The Neyrpic experiment was carried out with a paddle wavemaker, while the 

present study was made with a piston wavemaker. The relevant theory has long 
been known (Havelock 1939), and in itsgeneral form applies to both of these and to 
a much wider class of wavemakers. The general form of the wavemaker theory 
will be presented first, from which the special cases of piston and paddle wave- 
makers are obtained by substituting the appropriate boundary conditions. 

Let us consider two-dimensional small-amplitude waves, which are generated 
in a semi-infinite channel (0 6 x -= 00, 0 < y < h) of constant depth h by giving 
a simple-harmonic motion to a moving partition oscillating about x = 0; the 
co-ordinate y is chosen to increase with depth. The amplitude of motion of the 
partition is assumed to be so small that the equations can be linearized, and the 
partition is assumed to remain nearly vertical. To this approximation, the hori- 
zontal fluid velocity on z = 0 is equal to the horizontal component of the velocity 
of the partition. 

Viscosity and surface tension are neglected, and the simple-harmonic wave 
motion is described by a velocity potential $(x, y, t) which satisfies (see Lamb 
1932, $227) 

az$ a24 

ax2 ay2 
- + ~ = 0 in the region 

with the boundary conditions 

% = o  on 
aY 

a 2 $ + g -  a$ = 0 

3 = ~ ( y ) s i n a t  

a Y  

ax 

O < x x 0 0 ,  O ~ y y h ,  (3.1) 

Y = h, (3.2) 

on y = 0, (3.3) 

(3.4) on x =  0,  

and also the following boundary condition at  infinity: 

as x -+ 00, $(x, y, t )  -+ a progressive wave travelling in the positive x-direction. 
(3.5) 

Here 27r/v is the period, g is the acceleration of gravity and V(y) is the prescribed 
horizontal velocity on the wavemaker. The condition (3.3) expresses the con- 
stancy of pressure on the free surface; the radiation condition (3.5) is valid in a 
semi-infinite channel, or in a finite channel when there is complete absorption 
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by the beach, but is not exactly satisfied when the absorption is incomplete. 
According to Havelock, the potential is of the form: 

$(x, y, t )  = Aocosh ko(h - y) cos ( k , ~  - at) 
a, 

+sin at A, e-knxcos k,(h - y), (3 .6)  
n=l 

where k, is the real positive root of a2 = gk tanh kh, and k,, k,, . . . , are the real 
positive roots of u2 = - gk tan. kh. It can be shown that (n - +) n < knh < nn, 
whence k,h > in for all n, and so the terms under the summation in (3 .6)  are 
negligible at a distance of about 3h from the wavemaker. The constants 
A,, A,, A,, . . . are to be chosen to satisfy equation (3.4); thus, from (3 .6) ,  it  follows 
that W 

U ( y )  = Aok,coshko(h-y)- A,k,~osk,(h-y), (3 .7)  
n=l  

where the functions on the right of (3 .7)  form a complete orthogonal set, and so 

In particular, 

jOh U(y) cosh k,(h - y) dy = A,k, cosh2 k,(h - y) dy, 

1: U(y) cos kn(h - y) dy = - cos2 kn(h - y) dy. 

the wave profile a t  infinity is (Lamb, § 227) 

1 (a3 8 y=o 9 
= 3 cosh k, h sin ( k o z  - at) 

P h  

J ’” U(y) cosh k,(h - y) dy 

jOh cosh2 k,(h - y) dy 
. (3 .8 )  a 0 

gko 
= - cosh k, h sin ( k, x - at) 

For a piston wavemaker, U(y) = constant = +Sr, where S is the stroke of the 
wavemaker. and thus 

- a2 cosh k, h j, “coshk0(h-y)dy - Z(cosh 2kO __ h - 1) - - wave height _ -  - H 
S wavemaker stroke sinh 2k, h + 2k, h ’ 

(3.9) 
gko cosh2 k,(h - y) dy 

since a2 = gk, tanh k, h. In  these expressions H is the wave height a t  a distance 
(say x > 3h) from the wavemaker, and 2n/k, is the wave length at  a distance from 
the wavemaker. 

For apaddle wavemaker hinged at the bottom, we have U(y) = &!3a{l- (y/h)), 
and hence Ph 

- 4 sinh k,h k,h sinh k, h - cosh k, h + 1 - 
kOh sinh 2k, h + 2k, h 

(3.10) 
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Equation (3.10) has been derived and discussed by Bi&sel& Suquet (1951) and by 
Suquet (1951) and tested experimentally by the Neyrpic engineers. The present 
investigation was made on the piston wavemaker (for which equation (3.9) is 
appropriate) at  the Hydrodynamics Laboratory of the Massachusetts Institute 
of Technology. 

4. Effects not included in the simple theory 
4.1. ReJlexion from the beach 

In $ 3  it was assumed that the wave channel is infinitely long, or that the 
absorption of wave energy is complete. In  practice it is incomplete (the amplitude 
reflexion coefficient is at least a few per cent., e.g. see Greslou & Mahe (1954))) and 
unless it is corrected for, it  is one of the most serious limitations on experimental 
accuracy. Let us consider how the steady state is initially set up. When the 
wavemaker is first set in motion, a progressive wave train (primary incident 
wave) travels towards the beach. There it is partially reflected (primary 
reflected wave); the reflected amplitude is usually only a small fraction of the 
incident amplitude. The primary reflected wave is reflected (almost completely) 
from the wavemaker, as a secondary incident wave; this is reflected from the 
beach as a secondary reflected wave; and so on. The higher reflexions have 
progressively smaller amplitudes, and the steady state is almost attained after 
a few reflexions. Thus, if the reflexion is 10 % or less, the secondary reflected wave 
is at most 1 % of the primary incident wave, and is usually negligible. This 
description in terms of wave trains is valid only at  a distance from the wavemaker 
and the beach (see equation (3.6) for the end effect near the wavemaker); thus, in 
this middle region, the motion consists of an incident wave train (the sum of the 
primary, secondary, etc., incident waves) and a reflected wave train (the sum of 
the primary, secondary, etc., reflected waves). However, the relative phases of 
primary, secondary and higher-order waves depend on the effective length of the 
channel and are unknown. It will be noted that the final incident wave is not given 
by the theory of 9 3, which actually predicts the primary incident wave. It is the 
primary wave which must be obtained from the measurements. If the radiation 
condition is dropped and a standing wave now included, the potential valid 
except near the beach and satisfying all conditions of 6 3 except (3.5) is 

# ( z , Y , ~ )  = AOcoshk,(h-y) [COS ( ~ O X - V ~ ) + ~ E C O S ~ ~ X C O S ( ~ ~ + ~ ) ]  

W 

+ sin at C A ,  e-kfi” cos k,(h - y) 

+negligible end effects from the beach, 

n=l 

(4.1) 

where the coefficients A ,  (n = 0,1, . . .) are the same as in 9 3, and c and 8 are 
unknown parameters depending on beach characteristics and length of channel. 

The wave profile is (in an obvious notation) of the form 

sin(k,z-at)-Z2aecos1%,Zsin(d +8). (4.2) 

This involves the assumption that at  the wavemaker the reflexion is complete. 
From the description at the beginning of this section it is easily seen that E is 
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nearly equal to the reflexion coefficient when E is small. (The reflexion coefficient 
is by definition the amplitude ratio of the primary reflected wave to the primary 
incident wave, and also of the total reflected wave to the total incident wave.) 
The amplitude a of (4.2) is to be compared with the half-stroke &H given by (3.9). 
It will now be shown how a can be derived from measurements of the wave profile. 
An obvious method is to measure the wave height at points where coskOx = 0, 
i.e. where x = ( i m  + t )  wavelengths from the wavemaker (and not too near to the 
wavemaker or the beach). It has been found that this method does not lead to 
very consistent results, perhaps because of slight irregularities in the motion of 
the wavemaker, and another method of analysis has been used which depends on 
mean values rather than on values at  one point. The amplitude of oscillation a a t  
a distance x from the wavemaker is seen (from (4.2)) to be given by 

a2 = a2[ 1 + 2c cos 6 + 2e cos (2k0x + 6) + 2e2 cos 2k0x + 2e2], 

and when E is small 

a = a[l + E cos (212,~ + 6) + E cos 6+ 0 ( e 2 ) ] .  (4.3) 
Thus the wave amplitude varies sinusoidally from point to point, between a,,, 

and amin, where a,,, = (1+e+ecos6), 

a,, = (l-E+ecos&). 

It is found that the reflexion coefficient er is given by 

Equation (4.3)predicts that the sinusoidalvariationof amplitude along thechannel 
has a wavelength equal to half the wavelength of the incident wave; if measure- 
ments show such a variation, then cr can be obtained. The averaged position of the 
maxima and minima gives an estimate for 6. Once E (assuming E + er) and 6 are 
known, an estimate for a is found by averaging the amplitude over half a wave- 
length. From equation (4.3), we have 

aav = a[1 +ecos6 +0(e2)], (4.5) 

whence aav  
1+ECOS6 

a =  

or, less accurately, a = a,, if E is small. (4.7) 

It is the result calculated from equation (4.6) which is to be compared with the 
theoretical prediction (equation (3.9)) with H = 2a. 

4.2. Attenuation 

The analysis in terms of an incident and a standing wave (equation (4.2)) is not 
strictly appropriate when viscosity is taken into account. Viscosity causes a slight 
attenuation of the wave height as the incident wave travels from the wavemaker 
towards the beach and as the reflected wave travels from the beach towards the 
wavemaker. The theoretical estimate is due to Hunt (1952) who calculated the 
dissipation of energy in the boundary layers on the side-walls and on the bottom 
of the channel, making plausible assumptions. It would be expected that 



40 P. Ursell, R. G. Dean and Y .  S. Yu 
boundary layers account for most of the dissipation. If the amplitude attenuation 
is adequately described by a damping factor exp ( - K‘x), it  is found that, for 
a progressive wave train, 

b 2a 2koh+sinh2koh (4.8) 
K I =-(-) 2k0 v 4 ( kob+sinh2koh 

where b is the width of the channel, v is the kinematic viscosity, and the other 
symbols are defined in Q 3. This leads to values of K’ of the order of 5 x 10-4ft.-1, 
for which this effect is just measurable in the M.I.T. wave channel. 

4.3. Higher harmonics 

The motion of the wavemaker is not quite simple harmonic; the second har- 
monic may be of the order of 5 %, too large to be neglected. However, the third 
and higher harmonics will be assumed to be negligible. The motion at a fixed point 
is then approximately of the form 

f ( t ,  s’) = a’ cos at + a‘s’ cos (2at + sl), (4.9) 

where a’ is the local amplitude that is to be found, 6‘ is a constant but unknown 
phase angle, and s‘ is a number much smaller than unity (P is negligible when 
compared with unity). It will be shown that the difference between the maximum 
and minimum values off is 

fmax-fmin = 2a‘{l+ O(s’)2}, (4.10) 

involving only second and higher powers of s‘. Therefore this measurement is 
sufficient for our purpose. 

To prove equation (4.10), denote by tmax(s’) and tmin(s’) the times at which 
f ( t ,  6’) attains its maximum and minimum, respectively. These times depend on 6‘. 

Clearly in any one cycle tmax(0) -tmin(0) = n/a. Consider 

[f(t,axCs’>, €’I -f{tmin(E’), €’>I* 
This is a function of s’ which can be expanded in powers of 8’. The coefficient of 

evaluated at E‘ = 0. Clearly 

and so the coefficient is 

a’ cos (2atma, + S’) - a’ cos (2atm,, -t sl), 

and this vanishes when s‘ = 0, since 2dmaX and 2atmin then differ by 277. Thus the 
coefficient of s’ in fitmax(€’), 6’) -f{tmin(s‘), s’} vanishes, and the power series is 

fmax-fmin = 2a‘{l +O(s’)’), 

as previously stated in equation (4.10). 
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4.4. Non-linear effects 

The object of the present investigation is to test the validity of the linearized 
theory, and accordingly no correction need be made for non-linear effects. 
Actually, since there is as yet no non-linear wavemaker theory, these corrections 
could not have been included even if we had wished to do so. 

5. Experimental apparatus 
The wave channel in which the experiments were conducted is of rectangular 

cross-section with glass sides and bottom and is 3ft. deep, 24ft. wide and 
approximately looft. long (see figure 1). A piston-type wavemaker was used to 

Channel dimensions 
Length = 100 ft. 

Note: this drawing not to scale ” ’  “Channel bottom’ 

FIGURE 1. Schematic diagram of experimental equipment. 

generate the waves. A beach with a slope of 1: 15 at the far end of the channel 
from the wavemaker was used for the absorption of wave energy. A combination 
hook-and-point gauge was used for the measurement of the waves. These com- 
ponents are described in the following paragraphs. 

5.1. The wavemaker 

The wavemaker is a smooth aluminium plate oriented perpendicular to the axis 
of the channel and oscillates in a direction parallel to the axis of the channel. 
There is a small clearance of approximately t in .  between the edges of the wave- 
maker and the side-walls and bottom of the channel which was closed by an 
adjustable sponge rubber seal, thereby reducing the leakage around the edges of 
the wavemaker. 

The motion of the wavemaker is controlled by a hydraulic (oil) servomechanism 
system. The shaft of a double-acting cylinder is connected directly to a carriage 
by which the wavemaker is supported. Flow of oil under pressure into and out of 
the two chambers of the double-acting cylinder drives the wavemaker and is 
metered by a valve, the output of which is prescribed by a rotating cam acting 
through a mechanical leverage system, magnifying the input from the cam. The 
linear displacement of the wavemaker with time is designed to be the same 
(except for a scale factor) as the angular variation of the distance from the surface 
of the cam to the rotational axis of the cam. By use of different cams, each with 
a different control surface, the motion of the wavemaker can, in principle, be 
given any desired periodic form, but in practice the response was imperfect. To 
test the theory described in 0 3 the motion of the wavemaker was desired to be 
simple harmonic. Actually, we found at the beginning of the investigation that 
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with a simple harmonic cam the wavemaker motion was far from simple har- 
monic, but consisted of short steps rather than a smooth and continuous curve. 
This effect was noted particularly a t  the lower frequencies. Tests showed that it 
was due to friction in the seals of the hydraulic piston and could be reduced by 
continuously rotating the shaft of the piston. Further improvement was some- 
times achieved by trial-and-error adjustment of the valves controlling the oil 
pressures in the hydraulic system. The motion of the wavemaker was then nearly 
simple harmonic with the second harmonic not exceeding 5 % of the fundamental 
and the third harmonic being presumably much smaller. (In our analysis of the 
measurements, the second harmonic is in effect eliminated, see $ 4.3 above.) To 
obtain a simple-harmonic wave motion, other investigators have used wave filters 
(e.g. Bi6sel 1948); however, since a wave filter involves viscous dissipation, it 
could not have been used in this investigation which attempts to verify an 
inviscid theory. 

The stroke of the wavemaker can be varied from 0.01 to 2ft. by changing the 
length of the lever arm which transmits the motion of the cam to the valve. The 
periodicity can be varied from 0.7 sec to arbitrarily long periods by changing the 
rotational speed of the cam. A more detailed description of the wavemaker is 
given by Ippen & Eagleson (1955). 

5.2. The beach 

The beach is of plane, impermeable, varnished material, with a small gap (about 
t in . )  between the beach edges and the walls of the flume through which seepage 
could occur. The slope of the beach is 3.9 degrees. It was found that in most cases 
the reflected wave heights was less than 10 yo of the incident wave height (see 
$7.1 below). This compares favourably with the efficiency of other known 
absorbers, e.g. see Greslou & Mahe (1954) and Herbich (1956). 

5.3. Combination hook-and-point gauge 

This was used for the measurement of wave height. It is an adaptation of a well- 
known method for the measurement of water-surface elevations which are steady 
(i.e. time-independent) or varying very slowly. In  the final version of the gauge, 
the hook and point were on the same base, but could be adjusted independently. 
The hook and point portions of the gauge were used to indicate the trough and 
crest elevations, respectively. The difference between these levels can be shown 
to be independent of any second-harmonic component which may be present 
(see $4.3).  

The tip of the hook gauge was made of wire of small diameter (0*06in.), and 
there was no noticeable flow disturbance due to the tip for most waves used in 
this test. Both the hook and point portions of the gauge were attached to 
graduated staffs equipped with an adjusting knob and a vernier graduated to 
read displacements of the staff to the nearest 0.1 mm. The gauges were mounted 
with their tips in a vertical line and were both attached to a movable carriage 
which could be rolled on top of the channel to any longitudinal position along the 
channel and could be clamped rigidly in position for the measurement of a wave 
height. A source of light, mounted on the opposite side of the channel from the 
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observer, caused a reflected light pattern on the water surface and was useful in 
determining when the hook and point tip made contact with the water surface. 
When the hook or point gauge just touched the water surface, the curvature of the 
water surface at  this point changed abruptly, thereby interrupting the reflected 
light pattern at this point. It is estimated that each gauge could be read with 
a maximum error of 0.1 mm. In many cases the unsteadiness of the water surface 
was of the same order, and to allow for it the elevation of the crest (similarly of the 
trough) was defined as the elevation at which the gauge made contact with half 
the crests (or troughs). For high waves, the higher particle velocities at  the trough 
position caused ripples near the tip of the hook gauge and increased the uncer- 
tainty involved in the adjustment of the hook gauge elevation. 

In  order to obtain a measurement of wave height, i t  is necessary to know the 
difference in the two vernier readings when the tips of the two gauges are at the 
same elevation. This was obtained from readings at a still water surface. Since 
both gauges are on the same base, this difference is independent of the location of 
the gauge system along the channel. 

At first a capacity-wire gauge was used for wave measurement, and this was 
estimated to have an absolute error of about 2 mm (this agrees with the estimate 
of Tucker & Charnock (1955)). An absolute error of this magnitude is too large for 
our present purposes; for the size of waves used in this study (1-5 cm) the error 
would range approximately from 4-20 %. This gauge is also described in detail by 
Tppen & Eagleson (1955). 

An inherent disadvantage of the hook-and-point gauge is that only the wave 
height is obtained, while the capacity-wire gauge gives a continuous measurement 
of the water surface elevation; however, the absolute error associated with the 
hook-and-point gauge is much less than that associated with the capacity-wire 
gauge. Since we were concerned mainly with small-amplitude waves, where the 
error is limited by the absolute error of the gauge, we adopted the hook-and-point 
gauge and were content to regard the measurements of wave height (rather than 
of complete profiles) as a sufficient experimental check on the theory. 

6. Methods of measurement 
The theory of 9 3 predicts a relation (equation (3.9)) between the ratio 

wave height at  a distance from the wavemaker H 
stroke of wavemaker - S  (6.1) - - _  

and the ratio 
27r x water depth 27rh -~ 

wave length - L '  

It is this relation that was tested in the present set of experiments, with the aim 
of verifying the theory. For this purpose, it  is necessary to measure the following 
variables: ( 1 )  water depth, (2) wavemaker stroke, (3) wavelength, (4) wave height. 

6.1. Water depth 

The water depth was measured directly (in ft.) with a wooden scale immersed 
through the still water surface. For the range of depths involved, the error in 
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measured depth was less than 2 %. The resulting error in the ratio (6.1) due to 
a 2 % error in the ratio (6.2) is equal to or less than 2 % (actually much less for 
short waves). 

6.2. Wavernaker stroke 

The wavemaker stroke was measured (in cm) by fixing a pointer on the wave- 
maker carriage. Directly behind the pointer, a metre stick was fixed to astationary 
support, and so the relative positions of the extremities of motion could be 

Run no. 11 

Run no. 14 

FIGURE 2. Sample of wavemaker motion (continuous line) 
compared with sine curve (dotted line). 

measured visually. Attempts by different observers to reproduce the readings 
resulted in a maximum difference in the measured stroke of 0.2 mm. The resulting 
maximum proportional error is 2 % for the range of strokes used in this investiga- 
tion. A sample of the form of the wavemaker motion was also measured for each 
run by using a mechanical linkage to convert the translational displacement of the 
wavemaker into a small angular displacement. A variable rotary capacitor 
converted the angular displacement into an electrical signal which was recorded 
by a commercial Sanborn Model 150 oscilloscope. No significant non-linear 
effects were introduced by this method of conversion of the translation motion 
into an angular displacement. (See figure 2 for a comparison of measured wave- 
maker motion with simple harmonic motion.) 

7. Measurement of effects not included in the simple theory 
The present section describes measurements of effects not included in the 

simple wavemaker theory, some of which have been discussed in $4:  (1) the 
incident wave is partially reflected from the sloping beach, see 0 4.1 ; (2) the wave 
height is attenuated because of viscous dissipation, see $ 4.2 where a theoretical 
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expression for the attenuation coefficient was presented; (3) the waves may not 
be strictly two-dimensional; there may be transverse reflexions and transverse 
slopes of the water surface. 

3 6  

3 4 .  

2 - u 8 3 2 -  

9 30  
d 
$ 
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Run no. 9 
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' 0  " /A  

,,I LA, 4 K,, 
(fL)meor = 215 ft.. 
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\ qd 
k o o o  P 

O\-./ 

0- / 

12 13 14 15 16 
Distance from mean position of wavemaker (ft.) 

FIGURE 3. Measurement of wave height against distance. (Wavelength calculated 
from frequency by small-amplitude theory.) 

a mean value, the wavelength of the oscillation being +L. Figure 2 shows one 
experimental measurement of wave-height variation with distance, showing the 
expected reflexion effect. If the maximum and minimum values of the wave- 
height envelope (figure 3) are denoted by HmaX and Hmin, respectively, then the 
amplitude reflexion coefficient of the beach B, defined as the ratio of the reflected 
wave height to the incident wave height, may be expressed in the form (see also 
equation (4.4) 

(7.1) 
= 3 = B m a x -  Hmin 

Hi H m a x  + Hmin * 

Reflexion coefficients were calculated from the measurements wherever the 
variation of wave height with distance was of the form to be expected from the 
simple reflexion theory. In  several cases, the wave height variation with distance 
was not of wavelength +L, and there is some evidence that this may be due to 
transverse effects (see 3 7.3 below). The reflexion coefficients are plotted against 
deep-water wave steepness, H,/L, in figure 4, and are seen to be mostly of the 
order of 10 yo or less. The mechanism of wave reflexion by a sloping beach is not 
yet understood. A formula for the reflexion coefficient has been given by Miche 
(1951) which seems to predict the right order of magnitude, although it does not 
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claim to represent the physical processes correctly. Miche’s formula is also shown 
in figure 4. Miche first considers a standing wave on an impermeable beach of 
constant small slope p. The slope of the water surface at the shore line varies 
between a maximum (positive) and a minimum (negative) value which are 
(according to the linear theory) proportional to the deep-water steepness Ho/Lo. 
Miche defines a critical deep-water standing-wave steepness (2Bo/Lo)crlt, for 
which the maximum water surface slope at the beach is formally equal to the 

I I I I I I I I I I 

t 2 20 

01 I I I 
10- 2 5 10-~ 2 5 10-2 2 5 lo-‘ 

Deep-water wave steepness (Ho/Lo) 

FIUURE 4. Comparison of measured reflexion coefficients with Miche’s formula 
for a plane smooth beach. 

slope of the beach p (actually, the linear theory is not applicable here). The 
corresponding deep-water progressive-wave steepness for a beach of small 
slope p is 

Miche further suggests that the reflexion coefficient E,, the progressive wave 
deep-water steepness Ho/Lo, and the critical progressive wave deep-water steep- 
ness (Ho/Lo)crit are related by 

6, = 1 for HoILo (Ho/&)crit, (7.3) 

€, = ( Ho/Lo)crit  for Ho/Lo 2 ( Ho/Lo)crit. 
HOP0 

(7.4) 

Miche also modifies his formulas with an empirical coeacient to take into account 
the effect of roughness. While the arguments leading to equations (7.3) and (7.4) 
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seem to lack a real physical basis, the predictions agree quite well (at least in 
order of magnitude) with the measurements; see also Herbich (1956) for other 
measurements of reflexion. 

7.2. Attenuation 

Assume that the reduction in wave height (mainly due to viscous effects) as the 
wave progresses down the channel can be described by 

H - H e-K‘(Xa-Si), 
2 -  1 

where H, and Hl are the wave heights a t  stations x2 and x1 respectively, and 
K’ is the ‘attenuation coefficient’ with the dimensions of reciprocal length. 
A theoretical expression for the attenuation coefficient was presented in 5 4.2 
(equation (4.8)). Two measurements of the attenuation coefficient were made by 
measuring the wave height (averaged ov0r a half wavelength) at two stations 

HI H2 
Run (Station 14)* (Station 51) h T L KAna K 6 e o r  
no. (om) (cm) (ft.) (sec) (ft.) (ft.-l) (ft . -1) 

17 2.20 2.17 1.67 1.273 7.38 0.00038 0.00064 
18 2.62 2.55 2.31 0.927 4.39 0.00070 0.00098 

* Note. Stations are measured (in feet) from the mean position of the wavemaker with: 
b = 2.5 ft., and v = 1 x lo4 ft.2/sec. 

TABLE 1. Comparison of measured and theoretical attenuation coefficients 

37 ft. apart along the channel (see Table 1), and it was found that the decrease in 
wave height over the constant-depth portion of the channel was so small (about 
0.5 mm) as to be comparable with the absolute error. The conclusion is that, if the 
wave height is measured within 10 or 20 ft. of the wavemaker, the wave can be 
considered unattenuated for practical purposes. The wave characteristics and the 
values of the measured and theoretical attenuation coefficients are shown in 
Table 1. 

The measured and theoretical attenuation coefficients are in better agreement 
than could have been expected when the smell difference in wave height between 
the two stations is considered; particularly since the probable error in the 
measurement of Hl and H2 is of the same order as the difference of Hl and H2. It 
is interesting to note that some investigators (e.g. Benjamin & Ursell 1954, and 
Case & Parkinson 1957) had previously found measured attenuation coefficients 
which were greater than predicted by theory. One possible explanation for 
measured attenuation coefficients greater than theoretical predictions is that 
experiments performed on a small scale may include surface dissipation effects 
not included in the theory. 

7.3. Three-dimensional variations 

If all the generative and dissipative forces acting on the wave system were 
uniform across the channel, then no variation of wave height along the transverse 
dimension of the channel would be expected. In  some cases effects were observed 
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which may be due to the following three-dimensional causes: (1) Symmetric or 
asymmetric seepage past the edges of the wavemaker, or similar seepage between 
the edges of the beach and the side-walls of the channel. (2) Dissipation along the 
walls of the channel. (3) Breaking, or backflow after breaking, of a wave which is 
not uniform across the channel. (4) Three-dimensional instabilities (see Schuler 
1933). These effects were usually too small to be measurable; however, in some 
instances the variation of wave height with distance was not even approximately 
of the simple form (wave length @) predicted in 3 4.1) but wavelengths of $L and 
+L were also prominent. When this occurred, the wave motion was seen to be 
three-dimensional, although the reasons are not understood. A measurement of 
wave height across the channel for one of these cases showed the wave height 
varying approximately antisymmetrically about the centre of the channel. The 
difference in wave height at the two sides of the channel was of the order of 1 mm. 
Simple averaging of the wave height over a distance of +L on the centre line of the 
channel was used to reduce three-dimensional effects, as well as reflexion effects. 
This averaging process also tends to reduce any higher harmonics in the wave 
height which may be introduced by higher harmonics in the motion of the 
wavemaker. 

8. Test of wavemaker theory; discussion and conclusions 
In  order to test the theory for a piston wavemaker, the measured wave height 

was compared with the theoretical wave height as predicted by equation (3.9). 
In  order to check the theory, it is necessary to measure wave height H ,  wave 
period 2nl(r, water depth h, and wavemaker stroke S. Of these, the wave height 
cannot be found from a single measurement; the wave height was measured over 
a distance of at least +L, and the primary incident wave height, H = 2a, was 
deduced by the analysis described in 3 4.1. (There were six runs where the height 
variation was not even approximately of the form given by equation (4.3); see the 
discussion of 3 7.3. In these cases, only a crude average over +L was taken.) From 
the wave period 2n/u, the wavelength 2n/k, was calculated by use of the formula 
(r2 = gk, tanh k,h; then the ratios HIS and k,h were calculated. According to the 
theory, they should be related by equation (3.9). 

The measurements were first made for small wave steepnesses 

(0.002 < H / L  < 0.03) 

to test the validity of the small amplitude theory. The comparison with theory is 
shown in figure 5. 

Each experimental point assigns a value of HIS to a value of k, h; for the same 
value of k,h a theoretical value of HIS can be calculated, and the difference 
between this and the experimental value may be defined as the deviation between 
theory and experiment. Thus, for every point a percentage deviation is obtained. 
The deviation for the small wave steepnesses is found to be 5 yo; however, much 
of this comes from a single measurement for which the percentage deviation is 
32 yo and the reflexion coefficient is 45 % (which is in any case too high for the 
correction of 5 4.1 to be applicable). If this measurement is henceforth neglected, 
the average percentage deviation is 3.4 yo below the theoretical curve. The scatter 
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about a mean curve drawn 3.4 % below the theoretical curve is of the order of 3 %, 
and this is a reasonable estimate for the experimental error since the errors in 
measurement of wave height, wavelength, water depth, and wavemaker stroke 
have each been estimated to be of the order of 2%. Another source of scatter 
should be mentioned at this point. According to equation (4.3), the variation of 
wave height with distance should be sinusoidal. Actually, it  is found that the 
envelope though smooth is not exactly of the predicted form. In  particular, 

3 
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1 

n 

I I I I I I I 

Definition sketch 

0 1 2 3 4 5 6 7 8 

21TJlIL 

FIGURE 5. Test of wavemaker theory for small wave-steepnesses. 0 ,  Experiments 
corrected for reflexion ; 0 ,  experiments not corrected for reflexion. 

H,,, and Hmin do not repeat exactly at successive maxima and minima of the 
wave-height envelope. If the analysis of 3 4.1 is, nevertheless, applied, there is an 
uncertainty in the wave height, leading to a scatter. If the mean uncertainty is 
defined as one-half the average af the differences of successive maxima plus one- 
half the average of the.differences of successive minima divided by the average 
wave height, the mean percentage uncertainty is found to be of the order of 3 %. 
The reason for H,,, and H,,, not exactly repeating is not understood, although 
it is felt that it  may be a result of interference with transverse reflexions. 

mean deviation of 3.4 yo. This small deviation between theory and experiment 
may be partly explained by two effects, each tending to cause deviations in the 
observed direction. These are (i) leakage past the wavemaker, and (ii) finite- 
amplitude effects (see the next paragraph). Further improvements in equipment, 

4 Fluid Mech. 7 
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measuring technique and analysis would probably lead to even better agreement 
with theory, for sufficiently low waves. 

To test the limitation which finite-amplitude effects place on the range of 
validity of the small-amplitude theory, measurements were also made on steeper 
waves (0.045 < H / L  < 0.048). The comparison of these measurements with small 
amplitude theory is shown in figure 6 .  The mean deviation is 10% below the 
theoretical curve; the mean scatter of the experimental results about a curve 
10 % below the theoretical curve is again of the order of 3 yo. The systematic 
deviation of 10 yo is evidence that the effect of finite amplitude is to cause the 
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(All points are corrected for reflexion.) 
FIGURE 6. Deviation from wavemaker theory due to Gnite wave steepness. 

wave height to be less than predicted by small amplitude theory. The larger 
reduction, however, observed in the Neyrpic experiments can only be partly 
attributed to Gnite-amplitude effects. 

Two measurements of attenuation coefficients were made, and these were 
found to agree in order of magnitude with the theoretical predictions. In  order to 
check the theory (based on a laminar boundary layer) with greater accuracy, it 
would be necessary to have a channel with a larger ratio of wetted area to cross- 
sectional area; a t  the same time the size of the equipment must be large enough 
to avoid surface tension effects. 

The main limitation to experimental accuracy lies in the lack of a really efficient 
energy absorber. This study utilized a beach of small slope (3.9') with a resulting 
amplitude reflexion coefficient less than 10 % in most cases. The reflexion was 
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allowed for in the analysis; however, the possible error would be reduced and the 
analysis simplified if a more efficient absorber could be found. 

No explanation can be given for the rather large systematic deviation between 
theory and experiments found in the earlier Neyrpic experiment on a paddle 
wavemaker. The systematic deviation found in the present set of experiments on 

- 

no. of 
run 

1 
2 
3* 
4 
5* 
6 
7 
8 
9 

10* 
11* 
12* 
13 
14 
15 
16 
17 
18 
19 
20* 
21  
22 
23 
24 

Note : 

H S h T -  27rh 
(cm) (cm) (ft.) (sec) L 
2.67 5.66 2.01 3.23 0-51 
4.07 4.93 2.01 1.68 0.89 
3.63 2.22 2.01 1.17 1-89 
2.56 1-37 2-01 0.92 2-92 
1.77 1.34 2.19 1.42 1.49 
2.13 1.05 2.40 0.77 5.01 
2.01 1.03 2.40 0.79 4.76 
3.33 1.67 2.40 0.86 3.99 
2.88 1.51 2.40 0.92 3.52 
2.71 1-56 2.40 1.12 2.40 
2.03 1-82 2.40 1.73 1-19 
2.40 1.68 2.40 1.36 1.71 
2.77 1-56 2.40 1.11 2.44 
2.10 2.25 1.58 1.63 0.97 
1.40 2.06 1.57 2.09 0.72 
0-81 4.80 0.63 3.67 0.24 
2-26 1.88 1.67 1.27 1-42 
2.72 1-45 2.31 0.93 3-31 
1.84 1.50 1.67 1.25 1.45 
2.00 1.06 2.28 0.94 3.16 
4.77 2.54 2.00 0.79 3.98 
5.25 3.15 1.50 0.85 2.55 
5.47 4.50 1.00 0.95 1.51 
5.14 5.73 0.66 0.96 1.09 

(H/S)rn, 
0.48 
0.83 
1.64 
1.87 
1.33 
2.03 
1.96 
1.99 
1.90 
1.74 
1.12 
1.43 
1.77 
0.93 
0.68 
0.17 
1-20 
1.85 
1.23 
1.89 
1.88 
1.67 
1.22 
0.90 

Uncer - 
tainty in 

% 

0.51 4.1 0.00157 
0.88 4.2 0.0103 
1.62 - 0.0170 
1.92 2-1 0-0110 
1.37 - 0.00608 
2.00 4.3 0.0230 
2.00 3.9 0.0220 
1.99 6.9 0-0293 
1.97 5.9 0.0230 
1.82 - 0-0142 
1-15 - 0-00472 
1-52 - 0.00887 
1.82 2.4 0-0153 
0.97 2.1 0.00500 
0.70 5.7 0.00957 
0.25 45.1 0.00326 
1-32 3.6 0.00944 
1-96 5.7 0-0197 
1.33 3.3 0.00799 
1.94 - 0.0145 
1.99 2-2 0.0488 
1.85 3.6 0.0485 
1.39 5.4 0.0439 
1.05 5.5 0.0409 

(H/i%xor (%) (HLlILo) 

(a) Runs 1 to 20 are for low wave-steepnesses (0.002 < H/L < 0.03). 
(b) Runs 21 through 24 are for high wave-steepnesses (0.045 d H / L  < 0.048). 
(c) Values of H and H / S  are corrected for reflexion effects except in those runs marked 

with superscript *, where the wave height envelope waa not of the expected form. 
Values of er and the ‘uncertainty’ were not calculated for these runs. 

(d) Runs marked * are runs where only one maximum and minimum was obtained in the 
wave height envelope ; therefore, the uncertainty could not be calculated. 

Table 2. Summary of results 
~~ .. . . . 

a piston wavemaker is much less. It is felt that the theory is also correct for paddle 
wavemakers (for small amplitude waves) and that the deviation found by the 
Neyrpic group can only be explained as the result of reflexion or of effects not 
accounted for in the theory (i.e. possibly leakage about the edges of the wave- 
maker, motion of the wavemaker which was not simple harmonic, or other 
effects). 

The experiments constitute a close verification of the small-amplitude wave 
theory as applied to the simple case of a piston wavemaker, and provide evidence, 

4-2 
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for the first time, that this theory may be used with confidence to calculate wave 
amplitudes (and probably also forces) in more complex cases where experimental 
verification is not available. 

A summary of all measurements and calculations, for the present set of experi- 
ments on a piston wavemaker, is presented in Table 2. 

This investigation was carried out at the Hydrodynamics Laboratory of the 
Department of Civil and Sanitary Engineering at the Massachusetts Institute of 
Technology and was sponsored by the Office of Naval Research, United States 
Department of the Navy under Contract no. Nonr-1841(44). 
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